Skip to content
页面导航

Golang 基础 —— 流程控制语句:for、if、else、switch 和 defer

for

Go 只有一种循环结构:for 循环。

基本的 for 循环由三部分组成,它们用分号隔开:

  • 初始化语句:在第一次迭代前执行
  • 条件表达式:在每次迭代前求值
  • 后置语句:在每次迭代的结尾执行

初始化语句通常为一句短变量声明,该变量声明仅在 for 语句的作用域中可见。

一旦条件表达式的布尔值为 false,循环迭代就会终止。

注意:和 C、Java、JavaScript 之类的语言不同,Go 的 for 语句后面的三个构成部分外没有小括号, 大括号 { } 则是必须的。

go
func main() {
    sum := 0
    for i := 0; i < 10; i++ {
        sum += i
    }
    fmt.Println(sum)
}

初始化语句和后置语句是可选的。

go
func main() {
    sum := 1
    for ; sum < 1000; {
        sum += sum
    }
    fmt.Println(sum)
}

for 是 Go 中的“while”

此时你可以去掉分号,因为 C 的 while 在 Go 中叫做 for

go
func main() {
    sum := 1
    for sum < 1000 {
        sum += sum
    }
    fmt.Println(sum)
}

无限循环

如果省略循环条件,该循环就不会结束,因此无限循环可以写得很紧凑。

go
func main() {
    for {   
    }
}

if

Go 的 if 语句与 for 循环类似,表达式外无需小括号 ( ) ,而大括号 { } 则是必须的。

go
import (
    "fmt"
    "math"
)

func sqrt(x float64) string {
    if x < 0 {
        return sqrt(-x) + "i"
    }
    return fmt.Sprint(math.Sqrt(x))
}

func main() {
    fmt.Println(sqrt(2), sqrt(-4))
}

if 的简短语句

for 一样, if 语句可以在条件表达式前执行一个简单的语句。

该语句声明的变量作用域仅在 if 之内。

(在最后的 return 语句处使用 v 看看。)

go
import (
    "fmt"
    "math"
)

func pow(x, n, lim float64) float64 {
    if v := math.Pow(x, n); v < lim {
        return v
    }
    return lim
}

func main() {
    fmt.Println(
        pow(3, 2, 10),
        pow(3, 3, 20),
    )
}

if 和 else

if 的简短语句中声明的变量同样可以在任何对应的 else 块中使用。

(在 mainfmt.Println 调用开始前,两次对 pow 的调用均已执行并返回其各自的结果。)

练习:循环与函数

为了练习函数与循环,我们来实现一个平方根函数:用牛顿法实现平方根函数。

计算机通常使用循环来计算 x 的平方根。从某个猜测的值 z 开始,我们可以根据 z2x 的近似度来调整 z,产生一个更好的猜测:

z=(zzx)/(2z)

重复调整的过程,猜测的结果会越来越精确,得到的答案也会尽可能接近实际的平方根。

在提供的 func Sqrt 中实现它。无论输入是什么,对 z 的一个恰当的猜测为 1。 要开始,请重复计算 10 次并随之打印每次的 z 值。观察对于不同的值 x(1、2、3 ...), 你得到的答案是如何逼近结果的,猜测提升的速度有多快。

提示:用类型转换或浮点数语法来声明并初始化一个浮点数值:

go
z := 1.0
z := float64(1)

然后,修改循环条件,使得当值停止改变(或改变非常小)的时候退出循环。观察迭代次数大于还是小于 10。 尝试改变 z 的初始猜测,如 xx/2。你的函数结果与标准库中的 math.Sqrt 接近吗?

注: 如果你对该算法的细节感兴趣,上面的 z2xz2 到它所要到达的值(即 x)的距离, 除以的 2zz2 的导数,我们通过 z2 的变化速度来改变 z 的调整量。 这种通用方法叫做牛顿法。 它对很多函数,特别是平方根而言非常有效。)

go
func Sqrt(x float64) float64 {
    z := 1.0
    for i := 0;i < 10; i++ {
        z -= (z*z - x) / (2*z)
        fmt.Printf("第%v次:%v\n", i, z)
    }
    return 10
}

func main() {
    fmt.Println(Sqrt(2))
}

switch

switch 是编写一连串 if-else 语句的简便方法。它运行第一个值等于条件表达式的 case 语句。

Go 的 switch 语句类似于 C、C++、Java、JavaScript 和 PHP 中的,不过 Go 只运行选定的 case,而非之后所有的 case。 实际上,Go 自动提供了在这些语言中每个 case 后面所需的 break 语句。 除非以 fallthrough 语句结束,否则分支会自动终止。 Go 的另一点重要的不同在于 switch 的 case 无需为常量,且取值不必为整数。

go
import (
    "fmt"
    "runtime"
)

func main() {
    fmt.Print("Go runs on ")
    switch os := runtime.GOOS; os {
    case "darwin":
        fmt.Println("OS X.")
    case "linux":
        fmt.Println("Linux.")
    default:
        // freebsd, openbsd,
        // plan9, windows...
        fmt.Printf("%s.\n", os)
    }
}

switch 的求值顺序

switch 的 case 语句从上到下顺次执行,直到匹配成功时停止。

(例如,

go
switch i {
case 0:
case f():
}

i==0f 不会被调用。)

注意: Go 练习场中的时间总是从 2009-11-10 23:00:00 UTC 开始,该值的意义留给读者去发现。

go
import (
    "fmt"
    "time"
)

func main() {
    fmt.Println("When's Sunday?")
    today := time.Now().Weekday()
    switch time.Sunday {
    case today + 0:
        fmt.Println("Today.")
    case today + 1:
        fmt.Println("Tomorrow.")
    case today + 2:
        fmt.Println("In two days.")
    default:
    fmt.Println("Too far away.")
    }
}

没有条件的 switch

没有条件的 switch 同 switch true 一样。

这种形式能将一长串 if-then-else 写得更加清晰。

go
import (
    "fmt"
    "time"
)

func main() {
    t := time.Now()
    switch {
    case t.Hour() < 12:
        fmt.Println("Good morning!")
    case t.Hour() < 17:
        fmt.Println("Good afternoon.")
    default:
        fmt.Println("Good evening.")
    }
}

defer

defer 语句会将函数推迟到外层函数返回之后执行。

推迟调用的函数其参数会立即求值,但直到外层函数返回前该函数都不会被调用。

go
func main() {
    defer fmt.Println("world")

    fmt.Println("hello")
}

defer 栈

推迟的函数调用会被压入一个栈中。当外层函数返回时,被推迟的函数会按照后进先出的顺序调用。

更多关于 defer 语句的信息,请阅读 此博文

go
func main() {
    fmt.Println("counting")
    
    for i := 0; i < 10; i++ {
        defer fmt.Println(i)
    }
    
    fmt.Println("done")
}

Released under the MIT License.